Skip to main content

Predicting and Decomposing the Risk of Data-Driven Portfolios

Sophisticated algorithmic techniques are complementing human judgement across the fund industry. Whatever the type of rebalancing that occurs in the course of a longer horizon, it probably violates the buy-and-hold assumption. In this article, authors develop the methodology to predict, dissect and interpret the h-day financial risk in data-driven ...
Author(s)
Nabil Bouamara, Kris Boudt, Jürgen Vandenbroucke

Sophisticated algorithmic techniques are complementing human judgement across the fund industry. Whatever the type of rebalancing that occurs in the course of a longer horizon, it probably violates the buy-and-hold assumption. In this article, authors develop the methodology to predict, dissect and interpret the h-day financial risk in data-driven portfolios. Their risk budgeting approach is based on a flexible risk factor model that accommodates the dynamics in portfolio composition directly within the risk factors. Once these factors are defined, they cast portfolio risk measures, such as value-at-risk, into an additive mean-variance-skewness-kurtosis format. The simulation study confirms the gains in accuracy compared to the widespread square-root-of-time rule. Their main empirical findings rely on the two-decade performance of a portfolio insurance investment strategy. Rather than looking at total portfolio risk, they conclude that it is more informative to look inside the portfolio.

Register to download PDF

REGISTER / LOG IN