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1 - This is the purpose of the companion web-hosted tool EXCITE (EDHEC Cross-Model Climate Institute Temperature Emulator) developed by the EDHEC Climate Institute 
(accessible at https://climateinstitute.edhec.edu/data-visualizations#excite-emulator) which explores and simulates global temperature trajectories from IAM-derived 
emissions scenarios.

Abstract
The EDHEC-CLIRMAP (EDHEC-CLimate-Induced Regional MAcroimpacts Projector) is a web-hosted tool developed 
by the EDHEC Climate Institute. It provides a user-friendly platform for scientists, experts, professionals 
investors and policymakers to visualise how climate change-induced shifts in average temperature are projected 
to affect gross regional economic product under various warming scenarios. This document outlines the 
scientific background underpinning EDHEC-CLIRMAP, with emphasis on the macroeconomic framework, the 
climate econometric theory, and the Delta method elaborated to project future damages over time and space. 
By integrating the latest subnational economic information with highly-localised climate change simulations 
from the National Aeronautics and Space Administration, EDHEC-CLIRMAP enables users to intuitively explore 
the geography of future economic damages – and uncover heterogeneity stories relevant to climate adaptation.

1. Purpose of this Document
This document describes the web-based tool EDHEC-CLIRMAP (EDHEC-CLimate-Induced Regional MAcroimpacts 
Projector). In brief, its aim is to provide a user-friendly web-hosted platform for scientists, experts, professionals 
investors and policymakers to explore and visualise how gross regional economic product is expected to be 
impacted by climate-change-driven shifts in average temperature. The tool can be accessed here: 
https://climateinstitute.edhec.edu/data-visualizations#edhec-clirmap . 

The purpose of this document is to outline the scientific background underpinning EDHEC-CLIRMAP. This includes
 • the macroeconomic framework underlying how losses recorded at the unit-level and over the short-run, 
scale up into wider and longer-term productivity damages at the country-level;
 • the econometric theory behind the foundational temperature-gross regional product response functions 
using real historical data spanning the last 50 years;
 • the choice and transformation of climate change simulations with high time and space resolution from 
the National Aeronautics and Space Administration (NASA); and
 • the projection of chronic physical climate risk-driven gross regional economic product (GRP) changes 
distributed over future epochs, regions, and scenario × global climate models (GCM) ensembles.

Furthermore, we explain which inputs are needed for the projection, how they are fed into the projection 
engine, and how one should interpret the resulting outputs. The rest of the document is structured as follows. 
 • §2 summarises the general background and the structure of this tool;
 • §3 defines the theoretical macroeconomic framework; §4 describes the quantification of climate-gross 
GRP functions;
 • In §5, the NEX-GDDP-CMIP6 transformation and the development of the Delta Projection Framework 
are presented;
 • §6 discusses the distribution and interpretation of macroeconomic damages; and finally
 • §7 outlines caveats and directions to the future evolution of EDHEC-CLIRMAP

2. Background and Structure
 In this Section we define what is EDHEC-CLIRMAP and what it is not.

EDHEC-CLIRMAP is a state-of-the-art projection tool to project geo-economic damages caused by climate change. 
It builds on a companion EDHEC Climate Institute tool that obtains how the Earth surface temperature responds 
to various future emissions scenarios1. It relies on climate data externally sourced from leading climate data 
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2 - A major application of climate emulators is the analysis of the feedback loop between economic growth and temperature anomalies in Integrated Assessment Models 
such as DICE (Nordhaus, 2017), PAGE (Hope, 2011), FUND (Waldhoff et al, 2014) and as summarised in Golosov et al (2014) and Lemoine (2017).
3 - The damage function from Kotz et al (2024) has become a key feature in the enhancement of the 2024 physical risk assessment of the Network for Greening the Financial 
System (NGFS) Phase-V long-term scenarios for central banks and supervisors. See https://www.ngfs.net/en.

providers, such as NASA, and applies quantitative methods to provide an empirical estimate of the economic 
implications of physical climate risk. Its outputs are thus derived from a multi-stage methodology detailed in 
§4–6, and theoretically grounded in the macroeconomic framework presented in §3.

The objective of EDHEC-CLIRMAP is to allow researchers and non-experts to quickly visualise the heterogeneity 
of climate change damages on regional economic production under various warming futures. EDHEC-CLIRMAP 
explicitly focusses on the chronic segment of physical climate risks, which refers to the long-continuous shifts 
in climate patterns – such as gradual changes in average surface temperature – that progressively influence 
sectoral productivity, asset values, and financial stability. Contemporaneous measures of acute risks – i.e., 
sudden, shorter-term extreme weather events (e.g., hurricanes, floods, wildfires, and heatwaves) that cause 
immediate shock to infrastructure and supply chains – are not included in the simulated economic damages. 
This exclusion implies that EDHEC-CLIRMAP outputs are conservative and likely underestimated.

The granular outputs provided by EDHEC-CLIRMAP are the outcome of complex and sophisticated analysis, 
but they can be aggregated into a simple operational form useful for decision-making and risk management: 
a damage function. This is the mathematical representation of the non-linear relationship between changes 
in climate variables – typically mean temperature change relative to the pre-industrial period in °C - and the 
resulting economic damages – usually modelled as fractional loss in Gross Domestic Product (GDP) consumption 
– relative to a baseline period or scenario. Damage functions  are a key component of climate economics, and are 
perhaps the central module to Integrated Assessment Modelling (IAM), as they are at the heart of the feedback 
loop between economic output (Y), emissions (E), changes in temperature, ∆T , damages (Ω), and impairment 
to output (∆Y) (Y —> E —> ∆T —> Ω · · · —> ∆Y)2. After all, without damages Ω from rising temperature T, 
there is no reason to control polluting emissions E.

Since the reduction of climate-induced physical damages is what ultimately motivates costly abatement, the 
damage function must be quantified in a realistic manner. Any cost-benefit assessment of adaptation versus 
transition strategies also requires a prior understanding of the climate-economy relation. This is therefore 
another area where damage functions have made their contribution. The first theoretically-grounded damage 
functions were obtained from expert elicitation (Nordhaus, 2006; Weitzman, 2010). Their estimation has since 
evolved to become empirically calibrated (Burke et al., 2015) and increasingly informed by intra-country 
heterogeneity3 up until today. EDHEC-CLIRMAP, by offering a web-hosted visualisation of future geo-projected 
gross regional output losses over epochs and warming scenarios, extends this literature by highlighting the 
granular dimension of global economic climate damages.

In sum, EDHEC-CLIRMAP provides a basis for making more spatially localised projections of chronic physical 
climate risk-driven economic damages. Our non-linear climate-GRP response functions are obtained using 
state-of-the-art econometric techniques and are based on high-resolution sub-national economic data over 
the last 50 years (1970-2018). They have been combined with an ensemble of time- and spatially-resolved 
NEX-GDDP CMIP6 simulations from 29 distinct GCMs. Under the ‘pessimistic’ SSP5-RCP8.5 warming scenario, 
we find substantial agreement in the prediction of GCMs of average end-century per capita GRP declines of 
more than 75% from temperature shifts alone – with the largest effects in regions bordering the equator 
and the tropics (i.e., West Africa, Central America, South Asia). While broadly consistent with the global GDP 
damage estimates of Burke et al. (2015), our projections – derived from province-level data – systematically 
yield larger mean losses. We attribute this divergence to the finer-grained approach we have developed, which 
better captures localised climate and economic heterogeneity, particularly in terms of small-scale variations 
in exposure to extreme heat and gross regional economic vulnerability. Our results suggest that nationally-
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4 - This assumption imposes certain limitations. For example, research shows that the way energy demand in productive sectors reacts to temperature depends on a combination 
of: (i) individuals’ sensitivity to weather-related energy use (human factors); (ii) the scale of anticipated climate changes (climatic factors); and (iii) characteristics of buildings 
and indoor adaptation technologies (infrastructure factors) (Romitti and Sue Wing, 2022).
5 -It is worth mentioning that empirical evidence suggests labor does not shift between industries in response to temperature changes (Graff Zivin and Neidell, 2014).

derived estimates in Burke et al. (2015) may understate the true economic costs of future physical climate risk, 
reinforcing and extending the conclusions of Kotz et al. (2024).

3. Theoretical Macroeconomic Framework
Where do we stand theoretically? Our starting place is that climate change is, by nature, a global public-good 
problem that leaves no productive units or locations unaffected (Schlenker and Walker, 2016). The absence of 
a formal control group has fundamental implications for the impact evaluation approach to climate change, 
whether historically measured or future projected.

A pioneering theoretical formalisation of the aggregation of cross-climatic damage to productive units was 
offered in Burke et al. (2015), which we recall hereafter. This serves as the foundation for our theoretical 
framework, because it models how highly non-linear changes in productivity over short time scales and 
across many micro-units do scale up into macro-productivity damages – and largely explain the shape of 
macroeconomic responses over longer periods.

Consider dividing a standard macroeconomic framework into multiple industries, each labelled by an index i. 
We assume that all production units within a given industry exhibit uniform responses to temperature shocks4. 
Production within each industry is distributed across different spatial locations, indexed by , which are further 
grouped into countries represented by L. The time dimension is split into short increments, such as hours, 
denoted by t, commonly used in micro-level analyses, and longer durations spanning many such increments, 
like years, represented by τ.

Building on the framework of Deryugina and Hsiang (2014), the capital stock, denoted Ki, and labour input, 
Li, within each industry exhibit productivities AKi and ALi respectively. These productivities depend on the 
instantaneous temperature T ,t at a specific location  and time t. Both the total capital and labour employed 
in industry i are permitted to vary with changes in temperature. The output price per unit is represented by p, 
and α is a fixed parameter in this simplified production specification. For a given economic unit at location  
and time t, utilising technology set i, the aggregate production function Yi, ,t can be expressed as:

                     (1) 
             

The model posits that the adjustment of capital and labour allocation across locations in response to temperature 
fluctuations occurs gradually. It is well documented that the amount of time individuals dedicate to work varies 
with temperature, and this variation is incorporated into the model through changes in labour productivity,  ALi5. 
Under competitive equilibrium, the ratio of capital to labour in industry i at location  and time t is constant, 
given by  , meaning that capital-to-labour proportions remain fixed and output scales proportionally 
with the combined amounts of capital and labour allocated to industry i – indicating constant returns to scale 
in the production function. Let   represent a scalar quantity measuring the resources devoted 
to industry i at location  and time t. The variable Ui captures the count of modular production units (firms) 
assigned to industry i. Equation (1) can thus be expressed in a simplified form as:

                   (2)

The function fi(T ,t) captures how the productivity of industry i varies in response to instantaneous temperature 
changes. This economic model assumes that productivity effects are additively separable across different sectors 
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6 -Burke et al (2015) emphasise that this is not a probability distribution since the count of units at each temperature is not normalised by the total units. Instead, it resembles 
a frequency histogram rather than a probability histogram.
7 - In reality, the shape of gi(·) might vary as the distribution of temperatures that production units encounter changes within countries and years.

and geographic areas, considering firms as independent, atomistic agents. Nonetheless, major climatic shifts 
are expected to generate systemic effects that go beyond the responses of individual firms to localised climate 
variations. Such systemic impacts stem from extensive spillover effects between firms and from complex price 
adjustments that arise when climate-related events are correlated over time or space. For example, climate-
induced disruptions in a firm’s supply chain can amplify economic impacts well beyond the firm’s direct exposure. 
When these effects are significant and cross-border, the empirical strategy used here – which evaluates impacts 
at the country level independently – may fail to fully capture the wider economic consequences of broad 
climatic changes. Aggregate output, such as GDP, is calculated by summing production over all industries i 
and integrating across all geographic locations within a country and throughout the observed time period. 
Consequently, the total output in country L for year τ is given by:

                 (3) 
      

 

The spatial and temporal allocation of production units Ui,l,t, along with the geo graphical distribution of 
atmospheric temperatures, jointly determine the specific temperatures T ,t to which each unit is exposed. 
Within a given country L and year τ, it is possible to aggregate the instances when individual productive 
units experience local temperatures Ti, ,t, thereby forming a marginal distribution function that characterises 
temperature exposure for industry i. It is important to clarify that this marginal distribution function6 is 
denoted by gi(·), which has a mean of zero and can be shifted by a location parameter TL, τ representing the 
average temperature in country L during period τ. Thus, gi(T − TL, τ) can be interpreted as a histogram reflecting 
the temperature distribution experienced by the units Ui over a broad spatial and temporal scale. We assume 
that, unlike the country-year average temperature parameter TL, τ , the shape of gi(·) remains consistent across 
different countries and years7.

This assumption endows gi(·) with two key properties:
 • Firstly, for any given industry, the total measure or ’mass’ of productive units, denoted Mi, corresponds to 
the integral of gi(·) over all temperature values, including those found in historical temperature distributions:
    
         (4) 

 • Second, the shape of gi(·) reflects the distribution of productive units across space and time such that 
for x ∈ (−∞, ∞):
 
                

(5)

We can therefore write the total production at the aggregate level in terms of average temperature TL, τ expressed 
at the aggregate level, and gi(·):

                     (6)   
                          

 

                                      (7)

One no longer needs to track the full spatial and temporal profile of Ui,l,t. This is because, provided that the 
functional form gi(·) remains fairly consistent across years τ, the annual average temperature TL, τ becomes an 
adequate summary measure of temperature exposure at the aggregate level. Variations in TL, τ effectively shift 
the underlying distribution of temperature experienced by individual units. Burke et al. (2015) showed that 
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this allows for a re-parameterisation in which the complex joint distribution of temperatures and micro-level 
units is reduced to two elements: the shape of gi(·) and the scalar TL, τ, representing the country-level average 
temperature – our primary regressor of interest in the econometric framework formalised below in §4. To 
recap, suppose each function fi(T) represents the output contribution of a micro-level productive unit – such 
as a firm in industry i – as a function of instantaneous temperature T. Within a given country, time period, and 
sector, let mi1 and mi2 capture the proportions of total unit-hours exposed to temperatures below and above 
a critical threshold, respectively. This formulation implies that temperature exposure across unit-hours follows 
a distribution given by gi(T − T), which is normalised to have mean T. Given that gi(·) is centred at zero and 
assuming, as is common in the economic literature, that marginal productivity shocks at the unit-hour level 
do not propagate significantly across units, the total output Y can be expressed as the aggregate of industry-
level outputs – each obtained by integrating across the full distribution of unit-hours during the specified 
period and location:
              
         (8)

When the average temperature T increases, the entire region becomes warmer on average, leading to a rise in 
mi2 – the share of unit-hours exceeding the critical temperature threshold – for all productive entities situated 
within the country’s borders. This shift results in mounting productivity losses, reflected in a progressive 
decline in aggregate output Y(T). Equation (8) implies that Y(T) evolves smoothly and concavely, with its rate of 
change determined by the weighted average of the marginal effects of fi(T) across industries and temperature 
levels. The function Y(T) reaches its maximum at a temperature below the critical point in fi(T) if and only if 
the productivity losses incurred above the threshold outweigh the gains below it – that is, if the upper slope 
is more negative than the lower slope is positive, consistent with micro-level findings (Schlenker and Roberts, 
2009). These results raise questions about the validity of simply extrapolating nonlinear micro-level temperature 
responses to the macroeconomic scale (Hsiang, 2010; Heal and Park, 2013). More importantly, while immediate 
losses in productivity due to temperature variations are expected, their consequences may extend well beyond 
short-term output fluctuations. For example, temporary downturns in productivity can depress investment 
in capital formation, potentially altering the long-run growth path of the economy (Dell et al., 2012; Hsiang 
and Jina, 2014).

Following the approach of Burke et al. (2015), we empirically evaluate the model’s predictions using a panel 
dataset that combines subnational economic output with historical meteorological observations from 1970 
to 2018. Building on the national-level econometric framework of Burke et al. (2015), we develop a spatially 
disaggregated variant that operates at the level of administrative regions – thus aligning our spatial granularity 
more closely with that of studies such as Kotz et al. (2024).

In an ideal experimental design, the optimal setup would consist of two identical economic regions, one exposed 
to an exogenous temperature increase and the other left unaffected – allowing for a direct comparison of 
economic outcomes. Since such a counterfactual is unobservable in reality, researchers approximate it by using 
temporal variability within the same region, contrasting years with anomalously high temperatures against 
those with unusually low ones, as driven by stochastic atmospheric fluctuations (Willmott and Matsuura, 2012).
In this framework, cooler years serve as a ’control’ and warmer years as the ’treatment’ (Burke et al., 2015). 
This within-region, over-time comparison avoids the confounding influences inherent in conventional cross-
country or cross-region analyses, which infer temperature effects from economic differences across nations 
(Nordhaus, 2006).
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8 - Available at: https://zenodo.org/records/7659600
9 - Available at: https://fred.stlouisfed.org/series/AEXUSEU(2022)
10 - Available at: https://data.worldbank.org/indicator
11 - Equivalent to ~ 27 km × 27 km grid cells at the equator.
12 - Available at: https://ldas.gsfc.nasa.gov/gldas
13 - Other reanalysis data products available have either (i) a coarser spatial resolution (e.g. ECMWF-ERA40 and JRA-55, both available from the mid-1950s but at 1.125 deg.) 
or (ii) a shorter time series (e.g. newly released ECMWF-ERA5 at 0.281 deg. from 1979–present day and NCEP-CFSv2 at 0.205 deg. from 2011–present day).
14 - Latitude (Y) and longitude (X) values are concatenated (Y _X) to generate a grid-cell string variable uniquely identifying each 0.25 deg. resolved location of weather 
records; denoted x hereafter.
15 - We alternatively test the unweighted approach to straightforwardly aggregate NASA’s GLDAS grid-cell-level information to the spatial resolution of our GDP records. 
Estimated responses, available upon request, exhibit slightly weaker statistical power and are less reliable as they do not account for the heterogeneously distributed 
populations within countries.
16 - Available at: https://sedac.ciesin.columbia.edu/data/collection/gpw-v4

4. Method: Estimating Climate-GRP Functions

4.1 Historical Climate and Economic Data
We start our analysis by bringing 50 years of historical economic and climate information together.  

Historical gross regional GDP records. We take data relating to the gross regional product per capita of 
various administrative areas from the MCC-PIK Database of Subnational Economic Output (DOSE)8 (Wenz 
et al., 2023). Its most recent version provides harmonised data on reported economic outputs from 1,661 
subnational regions across 83 countries, with varying temporal coverage from 1960 to 2019. From this, 
we use a subset: 1970-2018. Sub-national units constitute the first administrative division below national. 
Recent work has used interpolation and downscaling to yield estimates of sub-national economic output, 
but reliable data based on official, reported values are lacking. Wenz et al. (2023) instead assembled values 
from numerous statistical agencies and yearbooks prior to apply harmonisation methods free of linear 
interpolations for both aggregate and sectoral output. Resulting records have been shown to be temporally 
and spatially consistent in regional boundaries, enabling coherent matches with geo-spatial climate fields. 
Following the general literature (Gennaioli and La Porta, 2014; Kalkuhl and Wenz, 2020; Kotz et al., 2021, 
2022) and most particularly Kotz et al. (2024), we focus on real subnational output per capita and convert 
values from local currencies to US dollars to account for diverging national inflationary tendencies and then 
account for US inflation using a US deflator. Conversions between currencies are conducted using exchange 
rates from the FRED database of the Federal Reserve Bank of St Louis9 and the national deflators from the 
World Bank10.

Historical weather exposures. The climate exposures of administrative regions are calculated based on 3h 
0.25 degree11 gridded surface temperature and precipitation fields from NASA’s Global Land Data Assimilation 
System12 (GLDAS – Rodell et al., 2004). GLDAS is a new-generation global high-resolution reanalysis data 
product developed jointly by NASA, Goddard Space Flight Center (GSFC) and National Centers for Environmental 
Prediction (NCEP) (Ji et al., 2015). GLDAS incorporates satellite and ground-based observations, producing 
long and consistent quality-controlled global gridded time series of optimal fields of land surface states and 
fluxes in near real time. These data also make available other meteorological variables that are not commonly 
available in other reanalysis data products either as consistent long time series, or at a high-spatial resolution13.
GLDAS 27 km × 27 km gridded fields are then collapsed into daily meteorological records over the 1970-2018 
period, and matched to the spatial and temporal resolution of our GDP realisations using the two-stage method 
described below:

First, we spatially aggregate the 27 km × 27 km grid-cell-level14 (x) weather exposure estimates to the 
administrative level (i) of GRP records (i.e., level 1 provinces, level 0 being countries) by day (d), using the 
population-weighting method15 presented below.

We use our network of NASA’s GLDAS 27 km × 27 km grid cell coordinates to compute time-invariant weights 
(w) from highly-resolved population density estimates (Dx,w) taken from downscaled time-invariant 2015 
information from the Gridded Population of the World raster dataset16 (updated version) (CIESIN, 2004). We 
link each province (i) of the dataset with all NASA’s GLDAS centroids (x) that fall within its boundaries. The 
population density-weighted daily (d) average weather by region (i), say for the temperature component (Ti,d), 
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is computed from grid-cell-level (Tx,d) daily climate values matched with locationally-specific population 
density information:

                                              (9)
 
Second, resulting daily (d) weather records matching each region-day are collapsed to the yearly frequency 
of our GDP observations t. We thus compute annual measures of heat and moisture exposures – i.e., average 
temperature values (Ti,t in deg.°C) and cumulative precipitation (in mm/year). These are matched to each region-
year output observation. Our raw estimation dataset contains 166 countries × year (~9,000 obs.) and 1,661 
administrative region × year (~82,000 obs.), again spanning the last 50 years (1970-2018).

4.2 Econometric Modeling of Climate-GRP Responses
We first econometrically model the responses of per capita gross regional product (GRP) to weather (temperature, 
precipitation) using a 49-year longitudinal sample of 1,661 sub-national administrative regions level I covering 
the last 50 years (1970-2018). We use a panel fixed effects (FEs) OLS model17, similar to specifications commonly 
used in the climate economics literature (Schlenker and Roberts, 2009; Burke et al., 2015; Kotz et al., 2024).

Let indices r, and t denote sub-national regions and years. Historical data provides annual observations of first-
differenced natural logarithm of per capita GRP (∆Y -per-period growth rates in income). We deconvolve the 
factors that might affect these changes via polynomial functions of temperature and cumulative precipitations 
(P). We estimate the benchmark empirical model: 

                                                   (10)

where µr are region-specific constant terms (fixed effects) that capture unobserved idiosyncratic spatially-
varying time-invariant influences (e.g., history, culture or topography). Given the long timespan of our dataset, 
attributing year-to-year exogenous variations in per capita GRP to weather typically allows the use of low 
frequency controls such as year fixed effects νt because they account for abrupt global events (such as shocks to 
energy markets or global recessions) without over-capturing cyclical temperature fluctuations. In addition to year 
dummies, gradual changes to individual regions’ growth rate, which may be driven by slowly changing factors 
within an administrative province (e.g, demographic shifts, evolving political institutions etc.), are accounted 
for via flexible time trends (Dell et al., 2012). Formalised , this region-specific18  time-dependent 
function aims to capture the unobserved region- and time-varying dynamics that influence per-capita GRP and 
which are correlated with climate. To do so, we use the Database of Global Administrative Areas (GADM)19 and 
spatially intersected grid-cell coordinates with the different sub-national administrative region identifiers in 
which they fall. Output is GID(0), GID(1) and GID(2) for countries, provinces, and counties/district, respectively. 
Finally,  is a random disturbance term that captures variations in per capita GRP orthogonal to time and 
spatially varying local climate conditions.

In line with recent micro-level evidence, we explicitly model the temperature impact on output growth in 
changes rather than levels because of the high degree of serial correlation in GRP data within countries 
(p = 0.999), which renders these series nearly perfectly collinear with random walks (i.e., they exhibit unit roots). 
This characteristic can lead to spurious regression estimates and invalid test statistics (Granger and Newbold, 
1974; Angrist and Pischke, 2009; Hsiang et al., 2013). Transforming income values using first differences, and 
controlling for year fixed effects, as well as country-specific quadratic growth trends, substantially reduces serial 
correlation in the outcome variable (p = 0.125). However, since some serial correlation remains even after first 

17 - A fixed effects panel model controls for unobserved time-invariant heterogeneity by allowing entity-specific intercepts, isolating the impact of time-varying regressors. 
For more exhaustive information, see Pretis (2021).
18 - Starting at unity (z(r) = 1 for provinces), zones’ size may extend to countries, as well as economic, trade or geographic clusters of countries likely to share that of a 
common trend.
19 - Available at: https://gadm.org/data.html 
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differencing, we account for this by clustering standard errors at the region level. This adjustment addresses 
spatial correlation and residual non-independence, following Cameron et al. (2011), and allows for arbitrary 
autocorrelation patterns within regions. In this framework, each administrative region is allowed to have its 
own intercept and non-linear growth trend, enabling the effect of temperature on growth to be identified from 
within-region deviations relative to this trend. Prior research has shown that controlling for income trends and 
convergence using location-specific trends offers more robust results than relying on autoregressive models 
(Barro, 2003; Hsiang and Jina, 2014).

Estimated parameters of interest are per-capita GRP growth impacts of the potentially non-linear effects 
of heat (captured by the function (Ti,t)), and precipitation (λ). Since idiosyncratic changes in local annual 
temperatures are often correlated with variations in precipitation (Auffhammer et al., 2013), we jointly estimate 
the effects of these weather components. Both historical and future economic impacts are likely to be the 
largest at the temperate extremes. We account for this convexity by estimating non-linear quadratic temperature 
components , where   are daily temperature averaged by region-year; allowing 
for marginal effects of a given amount of warming to vary locationally. More flexible functional forms have 
also been explored and are summarised in §4.3.

4.3 Uncertainty Handling
We account for empirical uncertainty by varying the functional form both of the temperature component and 
of the specification of the fixed effects20.

Functional Form of the temperature component. Given the considerable uncertainty surrounding the shape 
of the temperature-GDP response function, we test more flexible functional forms specifying its potential 
impact on output. This includes:
 i. setting higher polynomial orders (cubic, quartic) in a parametric FE-OLS framework; 
 ii. regressing restricted cubic splines with varying semi-parametric knots (2-7) capturing N -shaped relations; 
 iii. estimating non-parametric smoothed splines estimated via a generalised additive model (Wood, 2004) 
with location and time fixed effects. The choice of a non-parametric model would result from a preference 
to allow the data, rather than parametric assumptions, to determine the shape of the temperature-per capita 
GRP relationship.

        (11) 

where  are the fitted temperature splines integrable with average temperature, historically observed 
and future shifted, over epoch-specific simulations of climate change.

Functional Form of the FEs. Other omitted variables influencing both trends in temperature and economic 
output may affect the results. Starting from a simple FE structure of region-specific linear time trends 
(i.e., ), we test how the log of per-capita GRP responses vary with:
i. increasing Chebychev polynomial orders from quadratic to octic (8th) and
ii. variation in the spatial clustering of the flexible trend function (z(r)–from administrative areas level 1 to 
countries, and extending towards multi-regional or national clusters of economic or geographic areas likely to 
share that of a common trend).

We started off using Burke et al. (2015)’s preferred specification (quadratic country-specific time trends) and 
set an equivalent quadratic region-specific time trends version ( ). This approach is motivated by the 
need to flexibly capture non-linear dynamics in regional growth rates over time. Since the dependent variable 

20 - Associated results, however, are not provided in this document but available upon request.
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21 - NEX-GDDP CMIP6 is available at: https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6 
22 - The equilibrium climate sensitivity (ECS) is the global temperature increase after an instantaneous doubling of the CO2 concentration; the TCR (Transient Climate Response) 
is the global warming after 70 years of a 1% per annum increase in CO2.

is the derivative of income, each region is allowed its own level and non-linear trend in growth, and the impact 
of exogenous changes in temperature and precipitation on growth is identified from within-region deviations 
from this trend (McIntosh and Schlenker, 2006).

5. Method: NEX-GDDP-CMIP6 Transformation and Elaboration of the Delta Projection 
Framework
This Section summarises how we elaborated the Delta projection framework from applying transformation to 
climate simulation data.

5.1 NEX-GDDP-CMIP6 Processing
The NEX-GDDP-CMIP6 simulations serve as essential inputs to our analysis. Below we detail the transformations 
we apply.

Simulations of shifts in temperature exposure driven by climate change. Large-scale processing of 
high-resolution time- and spatially-downscaled climate projections from NASA Earth Exchange Global Daily 
Downscaled Projections21 (NEX-GDDP CMIP6). NEX-GDDP CMIP6 is an ensemble of 32 GCMs. These are simulated 
under the Coupled Model Intercomparison, Phase VI (CMIP6 – Eyring et al., 2016) exercise. Their outputs are 
biased-corrected and daily downscaled to a 0.25 deg. grid. Climate projections are then truncated to the 
geographic extents of sub-national provinces from the Global Administrative Database following the same 
population density-weighting methods as for historical data in Section §4. After this processing, they are used to 
calculate the weather variables for historical and future (2030, 2040, mid-century etc.) epochs, each according 
to a climate scenario. The resulting series of GCM-simulated values of each variable are averaged over the 20 
years straddling each mid-point (2031-2050 for 2040 etc.). After taking the inter-epoch difference between 
historical and future means, this gives us an ensemble of ‘Deltas’ values for each weather factor specific to 
scenarios, GCMs and epochs.

Since estimates of the economic effects of climate change are GCM-sensitive, we simulate median impacts 
from a wider set of GCMs. Other sources of uncertainty Cone from downscaling and from bias-correction 
which can potentially alter local climate projections in CMIP6 (Lafferty et al., 2023). A final concern is that a 
subset of CMIP6 GCMs may be “too hot”, because their representation of cloud feedbacks give rise to higher-
than-consensus ECS or TCR estimates.22(Sherwood et al., 2020; Tokarska et al., 2020; Zelinka et al., 2020). To 
mitigate bias, we follow Hausfather et al’s (2022) recommended procedure of excluding models with TCR and 
ECS outside “likely” ranges (1.4-2.2°C, 66% likelihood, and 2.5-4°C, 90% likelihood, respectively). This leaves us 
with an ensemble of ‘Delta’ values simulated from 15 “likely” GCMs – the full list is provided in Table 1 below 
– that we feed into our preferred GRP model (econometrically calibrated using real historical data spanning 
the last 50 years in Section §4 as part of our projection exercise).

Table 1: Classification of GCMs to correct Hausfather et al (2022)’s hot model problem

 GCM ID  Model Classification

ACCESS-ESM1-5 1 likely

BCC-CSM2-MR 2 likely

CESM2 3 not likely

CESM2-WACCM 4 not likely

CMCC-CM2-SR5 5 likely

CMCC-ESM2 6 likely
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23 - Basically, a semi-elasticity measures the percentage change in a dependent variable in response to a one-unit absolute change in an independent variable – e.g., if y 
and x denote dependent and independent variables (respectively), the semi-elasticity of y with respect to x is dlny  .

CNRM-CM6-1 7 not likely

CNRM-ESM2-1 8 not likely

CanESM5 9 not likely

EC-Earth3 10 none

EC-Earth3-Veg-LR 11 not likely

FGOALS-g3 12 likely

GFDL-CM4 13 likely

GFDL-ESM4 14 likely

HadGEM3-GC31-LL 15 not likely

IITM-ESM 15 not likely

INM-CM4-8 16 likely

INM-CM5-0 17 none

IPSL-CM6A-LR 18 likely

KACE-1-0-G 19 none

KIOST-ESM 20 none

MIROC6 21 likely

MIROC-ES2L 22 likely

MPI-ESM1-2-HR 23 likely

MPI-ESM1-2-LR 24 likely

MRI-ESM2-0 25 likely

NorESM2-LM 26 likely

NorESM2-MM 27 none

TaiESM1 28 none

UKESM1-0-LL 29 not likely

Note: This model classification is based on Hausfather et al.’s (2022) recommended procedure of excluding models with TCR and ECS outside “likely” ranges 
(1.4-2.2°C, 66% likelihood, and 2.5-4°C, 90% likelihood, respectively). That leaves us with 15 “likely” GCMs that form the basis of our macroeconomic impact 
modelling and which accounts for the ’hot models’ identified in the last generation of climate model simulations in CMIP6. For a more exhaustive review of 
this problem, see Hausfather et al (2022). 
Source: Our elaboration at EDHEC Climate Institute.

5.2 A Simple Damage Projection Framework: the Delta Method
Our fitted regional GDP model in Equation 10 facilitates projection of long-run GRP per capita changes 
associated with climate change-driven shifts in the temperature. We provide below a simplified formalisation 
of our projection framework: the Delta method.

Use x = {T} to denote the main weather covariate: temperature. Recall that  in Section §5, we computed and 
concatenated GCM-simulated values of this factor’s exposure. We did this for an ensemble of future 20-year 
averaged values corresponding to the climate epochs’ midpoints being analysed (2021-2040, 2031-2050, ..., 
2099). Then, following the same temporal parametrisation as for an historical baseline period (1995-2014), we 
calculated the inter-epoch differences to construct local region-specific shifters (∆x). Finally, we added these 
offsets to the 1995-2014 historical mean of the same sub-national predictors (x) to construct projected future 
climate values: x = x + ∆x. The latter are combined with our fitted econometric model estimated in Section §4 
to project GRP per capita changes induced by these region- and epoch-specific climate shifters.

For communication purpose, we reduce the temperature functional form fT(Tr,t) from §4.2 to one simple 
semi-elasticity23 (βT) of a linear temperature variable – instead of the actual polynomial function characterising 
fT(Tr,t). A simple projection framework for region r in future epoch t* can be formulated as:
                   

(12)
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24 - Among its limitations, the global DOSE dataset of reported sub-national economic output exhibits both temporal and spatial inconsistencies, with coverage restricted 
to 83 countries. A key characteristic of DOSE is its strict reliance on officially reported macroeconomic data from diverse national statistical offices and yearbooks, as Wenz 
et al (2023) deliberately excluded interpolation methods to address data gaps. While this approach ensures fidelity to observed values, it also results in discontinuous time 
series, particularly in under-reported provinces. Moreover, challenges related to administrative boundary consistency persist due to historical changes, which can lead to 
spatial mismatches when integrating with geospatial climate data, as discussed in §5.

and for our historical benchmark period t0:
                                         (13)

Facilitating computation of our primary impact metric: the projected fractional change (%) in GRP per capita 
as the inter-epoch difference (yr,t* − yr,t0 ) in outputs; such that the sub-national region × weather factor × 
epoch combination of climate shift-induced % change in regional GRP per capita can be computed as:

                      (14)

Where . This leaves us with an ensemble of region-specific simulations  that we 
distribute across the following vectors: 
 (i) 15 ’likely’ GCMs; 
 (ii) moderate (2-4.5) or vigorous (5-8.5) SSP-RCP warming scenarios; and
 (iii) future epochs (2030, 2040, ..., 2100). 

The burgeoning availability of SSP-RCP-specific GCM simulations from the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) presents a unique opportunity to incorporate the most advanced time- and spatially-
downscaled warming projections into our geo-economic modelling. Within a given country, we assume 
regions to be heterogeneously exposed to climate deltas, leading to equally heterogeneous economic impacts. 
§4 describes the spatial coverage of administrative province-level gross regional product time-series data in 
the raw DOSE product. It is to be noted that spatial gaps in sub-national output for some African and Middle 
Eastern countries remain, leaving an incomplete geographic coverage globally24. This is an obstacle that Kotz 
et al. (2024) faced. To project climate-driven economic damages in administrative regions lacking DOSE data, 
we apply a two-step approach:
 • First, by spatially intersecting the missing administrative regions with their respective ensembles of 
GCM-simulated localised Deltas derived from outputs of the NEX-GDDP CMIP6 processing in Section §5. 
 • Second, by combining these with our globally estimated non-linear semi-elasticities deemed theoretically 
suitable to capture the sign and shape of the general temperature-output relationship from all countries.

We thus obtain a synthetic ’enhanced’ vectorised projection matrix linking predicted per capita GDP impacts 
to each administrative province. This approach has the advantage of offering consistent coverage across all 
3,672 sub-national regions globally, while providing empirically valid damage estimates.

6. Distribution and Interpretation of Macroeconomic Damages
This section presents and decomposes the projected damage estimates on regional economic production. These 
are the precise outputs shown on the EDHEC-CLIRMAP tool map accessible here: 

https://climateinstitute.edhec.edu/data-visualizations#edhec-clirmap.

In this exercise, shifts in temperature exposure from both high- and moderate-warming scenarios (SSP5-RCP8.5 
and SSP2-RCP4.5, respectively) are considered. Although they differ in terms of economic trajectories and 
climate stringency forecasts, both sets of climate models predict vigorous warming to cause substantially more 
extreme high temperature circa-2050.

The EDHEC-CLIRMAP web module could but does not provide a graphical summary of model responses in 
the form of globally aggregated percentage damages. The reason is that global averages are less reliable for 
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investors seeking regional solutions. Estimates of global damages have granular origins that EDHEC-CLIRMAP 
chooses to exploit. We look more holistically at the spatial, temporal, climate model, and scenario distribution 
of projected GRP changes. Ultimately, delivering information on subnational economic damages predicted over 
time is both the explicit aim and the competitive edge of the EDHEC-CLIRMAP tool. Next, we detail how-to-
interpret examples of outputs shown in Panels a, b, and c of Figures 1 and 2.

Figure 1: Projected climate-change impacts

Notes: Projected climate-change impacts (%) on per capita gross regional product from shift in average temperature alone, 2099 epoch relative to constant 
historical 1985-2004 temperature means, multi-model medians of 15 ’likely’ CMIP6 GCMs. 
Note that the intermediate scenario is computed directly at the source as the midpoint average between the SSP5-8.5 and SSP2-4.5 future temperature 
trajectories. Source: our elaboration at EDHEC Climate Institute.
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25 - Differences between this study and Burke et al (2015) mainly relate to the elaboration of climate variables. Here, we calculated sub-national provinces’ climatic exposures 
based on 3h 27 km × 27 km gridded surface temperature and precipitation fields from GLDAS (Rodell et al, 2004) collapsed into daily climatic records over 1970-2018, 
and matched to the period of our gross regional output realisations (see §4 Methods). Burke et al (2015) instead used reconstruction data from the University of Delaware 
containing 0.5 degree gridded monthly average metrological fields over 1960-2010.
26 - This typically refers to the causal impact of climate factors on micro-level outcomes, which, when aggregated, produce broader macroeconomic changes. It borrows 
from causal inference terminology – a specifically the idea of a discrete treatment effect – but instead of a controlled experiment quantifiable via a Difference-in-Differences 
approach, the "treatment" is the continuous exposure to a changing climate that leaves no location untreated globally (Schlenker and Walker, 2016). In an ideal experimental 
design, two identical economies – one exposed to an exogenous temperature rise, the other not – would allow direct comparison of outputs; in practice and to overcome the 
public good problem of climate mentioned above, this is approximated by exploiting year-to-year temperature variation within the same country (Willmott and Matsuura, 
2012). Under the macroeconomic framework in §3, cooler years within a country serve as the empirical ‘control,’ while warmer years represent the ‘treatment’ (Burke et 
al, 2015). This temporal, within-country approach avoids cross-national comparisons, which are susceptible to confounding factors, distinguishing it from cross-sectional 
analyses that infer temperature effects from inter-country economic differences (Nordhaus, 2006).

To project future physical risk-driven GRP per capita changes, we combine outputs from §4 [=temperature-
GRP per capita response functions, our ensemble of semi-elasticities] with those from §5 [=region-specific 
simulations of climate ‘Deltas’, our local quantity ’shifters’].

Panel a of Figure 1 shows the spatial distribution of the multi-model median impacts at future epoch 2099, 
from our ensemble of 15 "likely" SSP5-RCP8.5 GCM realisations. Impacts, or induced changes (%), are expressed 
relative to a baseline period – here, constant historical 1985-2004 temperature means – which is equivalent 
to projecting the current economic system into a warmer future simulated by GCMs × climate scenarios. From 
shift in average temperature alone, province-level end-century median per capita GRP declines are recorded 
for most countries despite striking heterogenous magnitudes spanning the 5-85% range. Interspersed with 
isolated regions of negligible losses (0-5%), the largest damages are concentrated in areas overlapping the 
tropics or near the equator – particularly central Africa, America and Asia.

Across most countries, there is strong empirical agreement that climate change leads to net declines in per 
capita GRP, with the magnitude of these losses increasing as the absolute latitude of a country’s centroid 
decreases. This geographic pattern is consistent with previous findings from the agricultural sector, where the 
impacts of climate change on crop yields have been shown to align with agroclimatic zones (Sue Wing et al., 
2021). A small number of regions display modest net increases in per capita GRP, which can be attributed to 
two key factors: 
i. exposure to relatively low baseline average temperatures – placing these regions on the ascending (left-hand) 
side of the empirically estimated inverted U-shaped response function corroborating Burke et al. (2015)’s 
non-linear estimates25 in sign and magnitude – and
ii. comparatively smaller projected temperature changes (∆) in higher-latitude areas under CMIP6 scenarios.
In an SSP2-RCP4.5 scenario, projected temperature changes are relatively moderate. Panels b and c of Figure 
1, corresponding respectively to an intermediate warming case between SSP5-RCP8.5 and SSP2-RCP4.5, and a 
moderate warming realisation under SSP2-RCP4.5, display spatial patterns of projected per capita GRP damages 
that are consistent with higher-emissions scenarios, albeit at reduced intensity. Similarly, damages projected 
for the mid-century period (2041–2060), as shown in Figure 2, exhibit comparable spatial patterns to end-of-
century projections, though with reduced magnitude, reflecting the lower cumulative warming implied by the 
temporally shorter treatment effect26.

Both studies account for heterogenous intra-country population allocation and spatially aggregate grid-cell-
level weather exposure by province/country via a weighted collapsing method incorporating time-invariant 
sub-national population density statistics from the Gridded Population of the World dataset (2015 Version) 
(CIESIN, 2004).
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Figure 2: Projected climate-change impacts

Notes: Projected climate-change impacts (%) on per capita gross regional product from shift in average temperature alone, mid-century 2041-2060 epoch 
relative to constant historical 1985-2004 temperature means, multi-model medians of 15 ’likely’ CMIP6 global climate models (GCMs). Note that the intermediate 
scenario is computed directly at the source as the midpoint average between the SSP5-8.5 and SSP2-4.5 future temperature trajectories. 
Source: our elaboration at EDHEC Climate Institute.
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The geographic patterns revealed in Burke et al. (2015) are empirically confirmed for global regions, though 
per capita GRP losses appear larger when accounting for both economic and climatic intra-country variability. 
This finer resolution reveals that heterogeneously developed administrative regions are exposed to uneven level 
of physical climate risks driven by local environmental conditions, consistent with the results of Mahlstein et 
al. (2013). Notable zones of particularly high projected impacts include southern Europe, the Southwest US, 
western Mali, northern Nigeria, and parts of tropical Asia.

Finally, the distribution of projected GRP changes across individual GCMs matters. Estimates of the macroeconomic 
impacts of climate change are climate model-sensitive (Burke and Emerick, 2016), due to inherent structural 
differences in how these latter simulate temperature responses to CO2 emission trajectories. This is further 
emphasised in Hausfather et al. (2022)’s ’hot model problem’ covering CMIP6 ensemble outputs. SSP2-RCP4.5 
moderate GCMs finally exhibit similar but more concentrated patterns of model-specific heterogeneity in the 
prediction of output damages.

Therefore, these findings are consistent with those of Kotz et al. (2024) suggesting that estimating climate 
damages first regionally, rather than relying on country aggregates, yields significantly higher estimates of 
global economic losses, leaving a large place for patterns of spatial differences. This stems from greater accuracy 
in capturing localised climate and economic heterogeneity, as our approach better accounts for small-scale 
variations in exposure to extreme climate impacts and gross regional economic vulnerability, particularly in 
densely populated regions with higher exposure of infrastructures and sectors to climate risks and lower adaptive 
capacity. If aggregated, country-level estimates of climate damages may understate the true economic cost 
of future climate shocks.

7. Caveats and Evolution of EDHEC-CLIRMAP
The EDHEC-CLIRMAP module provides a basis for making more regionally localised projections of climatically-
induced economic damages but is not without caveats. We thus discuss potential dimensions to advance further 
EDHEC-CLIRMAP in the future.

7.1 Caveats
Caveats are primarily associated with the competitively higher spatial resolution of global data set of reported 
sub-national economic output (DOSE) (Wenz et al., 2023) that was derived by assembling values from numerous 
statistical agencies and yearbooks prior to apply harmonisation methods free of linear interpolations. First, 
the ‘reported’ nature of the DOSE project implies that its internal validity is inherently limited by the accuracy 
of national and regional administrations in displaying their economic output. Despite the increased spatial 
and temporal coverage of DOSE in comparison to most pre-existing datasets, data gaps in both dimensions 
remain, and so the use of satellite-derived data products could be a promising avenue for filling out these gaps. 
Spatially, sub-national output data are lacking for a large number of African and Middle-Eastern countries, 
suggesting a sampling skewed towards relatively wealthier western regions (over-represented), and leaving an 
incomplete geographic coverage globally. It is an obstacle faced by Kotz et al. (2024); which we addressed in 
the projection stage following a two-stage method described in §5. Temporally, DOSE tends to be unbalanced 
with the majority of observations taking place over the last three decades of coverage (1990–2020) compared 
to the earlier decades (1960–1990). A final limitation is that converting sub-national nominal GRP values in 
local currencies to real GRP data in USD is not straight-forward, partly due to the lack of auxiliary data at the 
sub-national level (i.e., GDP deflators are generally unavailable at the global scale).



19 EDHEC-CLIRMAP: EDHEC-CLimate-Induced Regional MAcroimpacts Projector — The Macroeconomic and Econometric Background — June 2025

Moreover, historical fields from GLDAS (Rodell et al., 2004) may suffer from limitations associated with the 
relatively coarse spatial resolution (27 km × 27 km grid) of this dataset which incompletely captures localised 
hydrological processes. For instance, used land surface models (Noah-LSM, VIC) rely on parametrisation that 
oversimplify our representation of complex processes, soil properties (e.g., satellite-based soil moisture or 
snow cover data) and vegetation types, whereas its atmospheric forcing data (e.g., precipitation, temperature, 
radiation) from reanalysis may propagate measurement errors throughout the system (Viviers et al., 2024). 
Similar arguments limit the accuracy of NEX-GDDP CMIP6’s ensemble of 29 global climate models (GCMs) 
simulated under the Coupled Model Intercomparison, Phase VI (CMIP6 – Eyring et al., 2016) exercise. Certain 
feedbacks, such as those involving ice-sheet dynamics or vegetation-atmosphere interactions, are either poorly 
represented or absent (Zelinka et al., 2020). This explains the ’hot model problem’ discussed earlier in §5 of the 
paper. Other remaining sources of uncertainty propagation are attributable to downscaling and bias-correction 
which might potentially alter local climate projections in CMIP6 (Lafferty et al., 2023).

7.2 Moving Forward
There are several doors for future extensions of this tool.
 • First, the EDHEC-CLIRMAP module provides globally distributed projections of climate change-driven 
economic damages at the level of administrative-region level I (i.e., provinces, 0 being countries). While this 
marks meaningful progress, much work remains to reach the next level of spatial disaggregation – estimating 
economic damages at the county level (i.e., administrative-region level II; N~48,000) – despite the potential for 
such results to offer breakthrough insights for decision-makers and investors seeking region-specific solutions.
 • Second, projected macroeconomic damages offered are derived from a dominant, yet incomplete 
representation of chronic physical climate risks: the long stochastic warming process from temperatures 
following an upward trend. Although incorporating a broader ensemble of chronic physical risk indicators (e.g., 
precipitation extremes, wet-day frequency, temperature variability) is feasible with sufficient time investment, 
recent findings highlight that their overall contributions to both direct and indirect future productivity losses 
are likely small compared to the overriding driving force of average temperature (Kotz et al., 2024).
 • Last but not least, there is an obvious, most urgent and critical missing piece in this climate-economy 
puzzle. In major sectors, the technical aspects of production supply need to be quantified in a warming 
framework. How has the balance of forces played out historically and geographically? What given both supply 
and demand determinants, the likely geo-sectoral economic implications are circa-2050? This is a milestone 
left for future, more ambitious work.
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About EDHEC Climate Institute

Institutional Context
Operating from campuses in Lille, Nice, Paris, London and Singapore, EDHEC Business School is ranked in 
the top ten European business schools. With more than 110 nationalities represented in its student body, 
some 50,000 alumni in 130 countries, and learning partnerships with 290 institutions worldwide, it is 
truly international.
 
EDHEC Business School has been recognised for over 20 years for its expertise in finance. Its approach 
to climate finance is founded on a commitment to equipping finance professionals and decision-makers 
with the insights, tools, and solutions necessary to navigate the challenges and opportunities presented 
by climate change. EDHEC has developed a significant research capacity on the financial measurement of 
climate risk, which relies on the best researchers in climate finance, and brings together experts in climate 
risks as well as in quantitative analysis.
 
The DNA of EDHEC's work has also resided, since its origin, in the ability to generate business ventures, 
by encouraging spin-offs based on the research work of its teams. EDHEC is currently involved in three 
ventures: Scientific Portfolio, Scientific Infra and Private Assets, and the soon-to-launch Scientific Climate 
Ratings.
 
Mission and Ambitions
The EDHEC Climate Institute (ECI) focuses on helping private and public decision-makers manage climate-
related financial risks and make the most of financial tools to support the transition to a low-emission 
economy that is more resilient to climate change.
 
It has a long track record as an independent and critical reference centre in helping long-term investors to 
understand and manage the financial implications of climate change on asset prices and the management 
of investments and climate action policies.
 
The institute has also developed an expertise in physical risks, developing proprietary research frameworks 
and innovative approaches. ECI is also conducting advanced research on climate transition risks, with a 
focus on supply chain emissions (Scope 3), consumer choices, and emerging technologies.
 
As part of its mission, ECI collaborates with academic partners, businesses, and financial players to establish 
targeted research partnerships. This includes making research outputs, publications, and data available in 
open source to maximise impact and accessibility.
 
The EDHEC Climate Institute gratefully acknowledges the support that the Monetary Authority of 
Singapore (MAS) has provided to its green infrastructure research.

climateinstitute.edhec.edu
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